328 research outputs found

    An experimental investigation of the force network ensemble

    Full text link
    We present an experiment in which a horizontal quasi-2D granular system with a fixed neighbor network is cyclically compressed and decompressed over 1000 cycles. We remove basal friction by floating the particles on a thin air cushion, so that particles only interact in-plane. As expected for a granular system, the applied load is not distributed uniformly, but is instead concentrated in force chains which form a network throughout the system. To visualize the structure of these networks, we use particles made from photoelastic material. The experimental setup and a new data-processing pipeline allow us to map out the evolution subject to the cyclic compressions. We characterize several statistical properties of the packing, including the probability density function of the contact force, and compare them with theoretical and numerical predictions from the force network ensemble theory.Comment: accepted for publication in the conference proceedings of Powders and Grains 201

    Statistics of defect motion in spatiotemporal chaos in inclined layer convection

    Full text link
    We report experiments on defect-tracking in the state of undulation chaos observed in thermal convection of an inclined fluid layer. We characterize the ensemble of defect trajectories according to their velocities, relative positions, diffusion, and gain and loss rates. In particular, the defects exhibit incidents of rapid transverse motion which result in power law distributions for a number of quantitative measures. We examine connections between this behavior and L\'evy flights and anomalous diffusion. In addition, we describe time-reversal and system size invariance for defect creation and annihilation rates.Comment: (21 pages, 17 figures

    Sound propagation and force chains in granular materials

    Full text link
    Granular materials are inherently heterogeneous, leading to challenges in formulating accurate models of sound propagation. In order to quantify acoustic responses in space and time, we perform experiments in a photoelastic granular material in which the internal stress pattern (in the form of force chains) is visible. We utilize two complementary methods, high-speed imaging and piezoelectric transduction, to provide particle-scale measurements of both the amplitude and speed of an acoustic wave in the near-field regime. We observe that the wave amplitude is on average largest within particles experiencing the largest forces, particularly in those chains radiating away from the source, with the force-dependence of this amplitude in qualitative agreement with a simple Hertzian-like model of particle contact area. In addition, we are able to directly observe rare transient force chains formed by the opening and closing of contacts during propagation. The speed of the leading edge of the pulse is in quantitative agreement with predictions for one-dimensional chains, while the slower speed of the peak response suggests that it contains waves which have travelled over multiple paths even within just this near-field region. These effects highlight the importance of particle-scale behaviors in determining the acoustical properties of granular materials

    Defect turbulence and generalized statistical mechanics

    Full text link
    We present experimental evidence that the motion of point defects in thermal convection patterns in an inclined fluid layer is well-described by Tsallis statistics with an entropic index q≈1.5q \approx 1.5. The dynamical properties of the defects (anomalous diffusion, shape of velocity distributions, power law decay of correlations) are in good agreement with typical predictions of nonextensive models, over a range of driving parameters
    • …
    corecore